对于硫氰化物废水预处理的相关报道不多,经过调查可知,硫氰化物具有较强的吸附能力和还原能力,以预处理工艺为例,去除水中的硫氰化物和COD等杂质常见的处理方法有过滤和吸附、微电解、水解、沉淀、催化氧化、化学混凝等方法。
对于含有硫氰化物杂质的中低浓度废水常用的方法有因科法、臭氧法、氯化法等,这些都是在废水处理中常用的处理工艺。其中因科法和氯化法因具有工艺简单、药剂来源广,且不用投入大量设备的优势,较为适合用于工业废水处理中。这种处理方式具有一定的优势,但也因为需要消耗大量的药剂,以及不能回收、易造成二次污染的缺陷,需要对废水进行深度处理。对硫氰化物废水进行处理采用臭氧法只需要有臭氧发生设备即可,且效率高、工艺简单,不需要添加药剂,也不会产生其他有害物质。此种处理方式也存在一定的弊端,例如设备成本较高、维护困难、利用率不高、臭氧浓度低等劣势,不适合推广应用。在含有硫氰化物的中低浓度废水中离子交换法和吸附法也是较为常用的处理方法,也具有良好的发展前景。
对于含有硫氰化物的中等浓度废水进行处理,可以采用氧化处理工艺,例如超临界水氧化、湿式空气氧化等,这种方法多用于进水指标中具有复杂组合成分而无法回收的废水处理中。以上超临界水氧化和湿式空气氧化两种废水处理工艺作为一种新型的污水处理技术,可以将氧气作为氧化剂来对高浓度硫氰化物废水进行处理,在高压和高温作用下能够高效降解硫氰化物。超临界水氧化和湿式空气氧化具有适用范围广、占地面积小、反应器结构简单等特点,尤其是在对杂质进行清除的时候不需要进行深度处理。这两种处理技术却对设备要求非常高,在实际的使用过程中也存在一定的限制。
2.2 生化处理工艺
随着技术的不断更迭和进步,生化处理技术逐渐受到重视,越来越多的研究人员对硫氰化物的生化处理技术展开研究和探索。在对硫氰化物废水进行处理的过程中,水中的微生物往往会把硫氰酸盐当作硫源和氮源。使物化处理中存在的不能彻底降解硫氰化物的缺陷通过生物法得到了有效的解决,这是一种可用性强的硫氰化物废水处理技术,这种技术的优势在于可以培养出对硫氰化物进行直接处理的优势菌种,以及新的处理技术。
一般情况下,对硫氰化物进行降解处理后分离出来的微生物有硫杆菌、甲基菌、节杆菌、假单胞菌等。这些微生物能够通过对含酚焦化废水、硫氰酸盐废水、高浓度硫代硫酸钠的活性污泥进行驯化和分离得到。有实验表明通过对高浓度硫氰化物焦化废水进行驯化可以从中得到由黄枯菌属、金黄杆菌属以及伯克氏菌组合而成的具有高效降解性质的硫氰化物菌群。
硫氰化物需要在好氧条件才便于进行生物降解,其处理工艺一般分为两种,一种是硝化脱氮单元,主要作用使去除废水中NH4+-N;另一种是除碳单元,主要作用是为硫氰化物分解释放二氧化碳。如果硫氰化物废水具有较高的负荷,而为了保证足够的停留时间和溶解氧,则可以应用生物处理法来实现。生化处理技术在经过不断的深入研究和发展之后,现在已经形成了好氧、缺氧和厌氧相结合的废水处理工艺。可以应用于生物滤塔法、高效菌的培养、生物接触氧化法、焦化废水、腈纶废水等。
2.3 联合处理工艺
应用生化法可以对硫氰化物废水进行高效的处理,有效去除废水中的硫氰化物,在工业废水中通常会含有大量有害物质,废水中的硫氰化物还具有可生化性差、COD值高、成分复杂的特点,如果利用生化法对其进行处理,不能使营养源得到充分利用,处理效率较低。在对含有硫氰化物的废水进行实际处理的过程中,单单采用一种处理工艺很难实现预想的效果,大部分企业在对硫氰化物废水进行处理时,会采用多种工艺相结合的方法来提升废水处理效率和效果。
在实际生产过程中,往往对于高浓度硫氰化物废水进行处理时会采用预处理技术、生化处理技术以及活性炭吸附和自然净化、直接氧化的组合技术,使各种废水处理技术融合到一起,这样才能使硫氰化物废水处理效率得到大幅度的提升。例如应用到腈纶废水中的混凝-缺氧-好氧流化床-生物接触氧化处理工艺、混凝-A/O组合工艺、曝气-生物活性炭滤池组合工艺等,这些工艺相互结合应用可以实现高效降解含硫氰化物废水的目的。
2.4 常见问题及应对策略
(1)通过调查进水指标区间得知,在二沉池出水往往会含有大量细小悬浮污泥颗粒。这种颗粒产生的原因是:因为操作不当的缘故,或者是因为水质的原因,形成了针状絮体;水力具有较大的负荷、由于活性污泥出现了大量的曝气,造成污泥产生了氧化反应;停留时间太短,加快了絮体流出的时间,在还没有沉降之前絮体就已经流出。
针对以上问题应该采取的应对策略是:如果污泥沉积的时间过长,就要先缩短其时间,从而对曝气量进行有效的控制;对于曝气池中应用的处理工艺进行适当调整,从而使污泥的属性得到改善。如果出现营养缺乏的状况时,就要加强营养;要相应的加入适量的化学絮凝剂;对出水堰的水平进行有效的调节;降低水力的负荷。
(2)污泥不断的上浮,堆积到一起,形成结块从而产生了污泥解絮,终导致污泥漂浮到表面,针对这些问题应该采取的有效应对策略有:有效去除在二沉池部件和内壁上黏附的污泥;及时对所用的刮泥板进行更换,保证刮泥板的使用功能;还要通过加强排放量的方式,将污泥快速的进行排出,从而降低污泥造成的影响。
2.5 硫氰化物废水处理工艺的处理效率
根据对此系统的观察研究发现,采用上述废水处理工艺后,O1曝气池处理挥发酚和硫化物的处理效率是,处理硫氰化物的处理效率是99%,处理COD的效率为93%,这些物质的去除效果明显,却提升了氨氮的含量。从理论的角度来讲,24mg的NH4+-N需要有100mg的SCN才能得到,而其中有10%的含量将作为氮源为微生物提供能量,使其转化成生物质,其他的都会以NH+4的形式存在于水体之中,正是由于这些原因才使得氨氮的含量得到了大幅度的提升。
1、生物脱氮除磷机理
氮磷可依靠微生物的新陈代谢作用在适宜的环境条件下被脱除。传统生物脱氮主要通过氨化、硝化和反硝化过程,使氮素终以N2形式排入大气。在厌氧或好氧条件下,细菌、真菌和放线菌将有机氮化合物转化为氨氮的过程为氨化;好氧条件下氨氮在氨氧化细菌(AOB)作用下氧化为亚硝酸盐,被亚硝酸氧化菌(NOB)氧化为硝酸盐的过程为硝化。硝化细菌均是化能自养型,生长极其缓慢,平均世代时间在10h以上,且易受pH、温度等外界条件的影响。参与污水硝化过程的细菌主要为亚硝化单胞菌(Nitrosomonas)和硝化菌属(Nitrobacter),完整的硝化氮素过程为NH4+-N→NH2OH→NO2--N→NO3--N;缺氧条件下硝酸盐在反硝化细菌的作用下转变为N2,完整的反硝化氮素反应包括以下几个过程:NO3--N→NO2--N→NO→N2O→N2,反硝化细菌分属于假单胞菌属(Pseudomonaceae)、产碱杆菌属(Caicaiigenes)、芽孢杆菌属(Bacillus)等50多个属。氨化、硝化和反硝化氮代谢的过程需要多种酶系参与,编码这些酶的基因可作为相应的功能基因,其中反硝化相关基因所占比例高,达80.81%,是氨化(12.78%)和硝化(4.38%)〔10〕。随着对微生物脱氮认识的深入,发现了自养反硝化、异养硝化、好氧反硝化和聚磷菌反硝化等,特征和影响,这些丰富了生物脱氮理论和生物脱氮工艺的发展。
2、污水处理脱氮除磷工艺的研究进展
2.1 脱氮的依据
氨化、硝化和反硝化等脱氮方式是属于生物脱氮法,在污水处理时经常会用到。氨化方式实现脱氮是在氨化菌的作用下,把有机氮化物转化成了氨氮,以此来实现了脱氮。硝化方式实现脱氮是利用了硝化细菌,反硝化方式实现脱氮是利用了反硝化细菌,把产生的含氮化合物转化为气态,并且是在缺氧条件下进行的。同化方式来实现脱氮是把含氮化合物转变为了微生物的组成部分。生物脱氮法是经常用到的一种脱氮技术,尤其是在传统脱氮技术中。成本较高并且工艺比较复杂的化学脱氮法则很少被应用到污水处理中。
2.2 氧化沟工艺
氧化沟是一种稳定去除氨氮的处理方式,目前各国广泛使用。该方法具有两种类型反应器的特征:完全混合型和推式。封闭循环罐对污水具有良好的氮和磷去除效果。氧化沟工艺简化了预处理,去除了有机物和氮磷化合物。氧化沟对高浓度工业废水具有良好的稀释能力,可以承受水质和水量的冲击负荷。由于推流的特性,水流方向可以形成溶解氧浓度梯度,以形成好氧、缺氧和厌氧条件,从而更好地实现氮和磷的去除效果。
2.3 微压内循环多生物相处理技术
微压内循环多生物相生物处理技术是一种新型污水处理技术,实现在同一反应器内形成厌氧区、缺氧区、好氧区并存,多生物相协同生长的微压内循环多生物应器(MPR),为多种脱氮机制提供稳定各自适宜的环境,节省了硝化液回流设备的减少了污泥回流量;反应器内溶解氧梯度的变化,解决了脱氮除磷的泥龄矛盾问题。常温条件下,MPR反应器利用短程硝化反硝化脱氮,低温条件下,利用全程硝化反硝化脱氮。通过对微压内循环反应器和传统推流式反应器的初步调试,发现由于微压内循环反应器的内部特殊结构以及曝气方式可以有效解决传统推流式反应器存在的泡沫堆积问题。基于微压内循环多生物相处理技术,通过改变反应器内部增设半包围导流板设计出微压竖向双循环反应器,经过小试实验研究,得出结论:双循环反应器对有机物、氮磷的去除优于传统SBR,内部微生物种类丰富,相同运行条件下具有节能降耗的优势。微压内循环多生物应器可以有效地去除城市污水中的有机物、氮、磷,其出水水质远远优于传统的城市污水处理方法。这些水可以作为多种水源,如冷却、绿化、景观用水等,甚至可以通过深度处理,可以作为饮用水的补充水源。这样,城市污水不但不会污染环境,反而会解决我国日益严重的水资源短缺问题,有效的为城市提供二次水源。