金属氧化物催化剂的羟基自由基(·OH)和表面配位络合反应机理;臭氧与金属氧化物表面的羟基作用生成HO2-,HO2-继续与臭氧生成HO2·,HO2·与臭氧之间作用生成O3-和HO3·,后HO3·分解产生·OH。
4.1.2 技术特点
(1)对有机污染物高吸附、臭氧与催化剂及有机分子接触、羟基自由基在接触位点快速发生并迅速降解有机物的“三”条件。
(2)通过特殊的压溶溶气泵,将臭氧在水中的溶解度提高5~8倍,极大地提高了臭氧与水体中有机物及固态催化剂的接触时间和接触面积,从而提高了臭氧的利用率。
(3)在压溶溶气泵的溶气量达到极限值时(一般为处理水量15%~30%的体积比),比常规的曝气方式效率要高。
(4)臭氧气体全压溶,臭氧化水携压运行,在运行压力(≤2.0MPa)条件下,臭氧半衰期保持基本不变。
4.1.3 应用领域
适合含有中低浓度有机污染物(COD:100~1000mg/L)的“高盐、高难降解、高氨氮、高生物毒性”的四高废水处理,适合处理水量为每天1000~50000t。
4.2 四相催化氧化技术
4.2.1 四相催化氧化原理
四相催化氧化反应器技术是一项结合了多金属催化剂载体流化
床、双氧化剂协同催化氧化、同相化学氧化(Fenton法)、异相化学氧化(H2O2/FeOH)及FeOH的还原溶解等功能的新技术,是一种业界的具有更强实用性和经济性的第五代Fenton反应技术。
4.2.2 技术特点
(1)利用铷铁硼磁等特殊材料产生的微电磁场并控制各种反应条件,完成常温常压下羟基自由基的调动;
(2)不断地将空气中的氧气溶于水中并参与链式反应。获得亲电加成生成的自由基利用溶解的氧气完成的分解,大幅降低了H2O2的消耗量;
(3)载体流化床技术截留铁氧化物并起到同相催化和异相催化的作用,减少亚铁的投加和污泥的产生;
(4)较传统Fenton法,大幅降低了药剂费用和操作的难度,处理成本仅0.7~1.5元/m3。
4.2.3 应用领域
四相催化氧化废水深度处理技术已成功应用于制革、制药、煤化工、酿酒、印染、造纸等行业,主要应用于难生化废水的处理、较大毒性废水的处理、中水回用要求的废水处理及高色度废水脱色处理。
4.3 湿式氧化处理技术
4.3.1 湿式氧化技术原理
湿式氧化技术(Wet Oxidation,WO)被证明是一种有
近年来,随着我国医疗事业迅猛发展,医疗废水排放量不断增加,医疗机构废水产生的主要部门有诊疗室、病房、洗衣房、手术室、化验室等。
医疗废水的来源及成分比较复杂,污水受到粪便、传染性细菌和病毒等病原性微生物污染,含有病原性微生物、有毒、有害的物理化学污染物以及放射性污染等,具有传染性,可以诱发疾病或造成伤害。目前几乎所有的医院均建设了废水处理系统,废水经处理后满足《污水排入城镇下水道水质标准》(GB_T31962-2015),可以排入城市下水道,经城市污水处理厂处理。目前医院废水处理普遍存在重视水质处理达标排放,而轻视污泥的处理与处置,对于污泥的处理主要采用的是污泥浓缩+脱水机脱水+泥饼外运,在工程实际与运营实践中,由于污泥处理许多是间断性的,造成运行处理不善,或者基本停止运行,直接把污泥排入化粪池,清掏外运,甚至随意排放进入下水道。
《医疗废物分类目录》(卫医发〔2003〕287号)中的“感染性废物”中列有“其他被病人血液、体液、排泄物污染的物品”,医疗机构污水处理过程中产生的栅渣、沉淀污泥和化粪池污泥等应列入此类,废物代码为831-001-01。《国家危险废物名录》(环境保护部令39号)第三条规定:“医疗废物属于危险废物。医疗废物分类按照《医疗废物分类目录》执行。”医院废水处理污泥应列入此类,废物代码为900-001-01,属于为防治动物传染病而需要收集和处置的废物。《医疗机构水污染物排放标准》(GB18466-2005)明确了污泥控制与处置要求“栅渣、化粪池和污水处理站污泥属危险废物,应按危险废物进行处理和处置。”
根据《医疗污染物排放标准》(DB37/T596-2006),医疗机构产生的污泥应委托有相应资质的单位集中焚烧处理。目前国内危险废物处理机构焚烧污泥的委托处理费用在5000元/吨左右,费用相对昂贵,医疗废水处理污泥减量化非常必要。
目前国内大部分医院的污水处理站污泥均排入化粪池。随着医院门诊量及住院人数的增加,废水量不断增加,相应的污泥量增加,采用现有处理技术尚有很大的局限性,处理效果不十分理想。处理每吨医院废水产生的污泥量约0.3-0.5m3,由于污泥含水率99%以上,浓缩脱水处理不甚理想,运行操作不便,并且终委托处置焚烧费用较高。开展医院废水污泥减量化综合处理技术十分必要。
通过开展医院废水污泥减量化综合处理技术的研究,可以优化设计与运行,一方面可以优化工艺设计减少污泥的终产生量,另一方面优化污泥处理与处置设计,实现污泥处置的简便,保证无害化处置。从而对于推动医院废水处理技术的创新发展具有重要意义。
2、国内外研究现状与分析
目前国内外处理医疗废水主要有以下四种工艺:
①生物滤池+消毒;②膜分离法+消毒;③生物接触氧化法+消毒;④活性污泥法+消毒。而对于污泥的处理,根据《医院污水处理技术指南》(2013.10)一般要求每天湿污泥产量小于2m3的医疗废水处理系统,污泥可在消毒后排入化粪池,每天湿污泥产量大于2m3的医疗废水处理系统,污泥消毒后进行脱水。
国内目前对于一般污水处理厂污泥减量化主要有解偶联代谢法、高浓度溶解氧活性污泥工艺、好氧—沉淀—厌氧(OSA)工艺、溶解细胞法、微型动物减少剩余污泥量法、臭氧连续循环处理法、多级串联接触曝气法等。
3、医疗机构的废水处理减量化推荐工艺
医疗机构废水处理比较分散,一般属于中小水量,医疗机构一般缺少专门的污水处理技术管理人员,管理方便是医疗机构废水处理装置选择中非常重要的一个因素。目前国内开发的膜技术污水处理“兼氧FMBR工艺”适合于中小医疗机构的废水处理。
膜生物反应器是一种由膜分离单元与生物处理单元相结合的水处理技术。膜生物反应器主要由生物反应器及膜分离组件两部分组成。而兼氧FMBR将分离工程中的膜分离技术与传统废水生物处理技术有机结合,从而提高了固液分离效率,由于曝气池中活性污泥浓度的增大和污泥中菌的出现,提高了生化反应速率。通过降低污泥负荷而减少剩余污泥产生量,甚至减少为近零,从而基本解决了传统活性污泥法存在的许多突出问题。
兼氧FMBR污泥以兼性厌氧菌为主,有机物的降解主要是通过较高浓度的污泥在兼性厌氧性菌作用下完成的。大分子有机污染物是被逐步降解为小分子有机物,终氧化分解为二氧化碳和水等稳定的无机物质。由于兼性厌氧菌的生成不需要溶解氧的保证,降低了动力消耗。曝气的主要作用是对膜丝进行冲刷、震荡,产生的溶解氧正好被用来氧化部分小分子有机物和维持出水的溶解氧值。
兼氧FMBR技术主要特点:
①污水污泥同步处理(有机污泥近零排放),实现了有机污泥的大幅度减量,实现有机剩余污泥零排放,成功解决了剩余污泥处置难题;
②实现了污水气化除磷,兼氧FMBR工艺中在特性菌在兼性条件下将污水当中磷转化为气态的PH3,该生物气化除磷途径完全不同于传统的生物除磷工艺,是一种全新的高效低耗生物除磷新工艺。类似自然现象中某些场合下磷被转化为气体磷化氢的现象;
③同步脱氮。由于实现了短程硝化、厌氧氨氧化作用,减少了供氧,大幅降低曝气能耗和反硝化所需碳源,从而实现了高效脱氮目的。在实施上,不仅要优化营养条件和环境条件,促进厌氧氨氧化菌的生长,要设法改善菌体的沉降性能并改进反应器的结构,促使功能菌有效持留。
兼氧FMBR工艺与一般的氧化沟、SBR、A/O、A2/O、CASS工艺等处理技术大的优点是污泥的近零排放,无需再安装单独的过滤系统,膜处理器系统集成化较高,废水处理基本实现全自动无人操作。兼氧FMBR工艺简单、效率高、恶臭味小,具有运行成本低、投资省(厂站工程总投资4500元/吨水)、占地小和易选址等优点。
效处理高盐高毒有机废水的工艺,是在高温(125~320℃)、高压(0.5~20MPa)操作条件下,利用氧气或空气作为氧化剂,在液相中将有机物氧化降解的过程。WO过程中,有机磷化合物中的磷元素分解为无机磷,有机氮化合物中的氮元素分解为氨氮,难降解有机物分解为小分子易生化化合物,废水COD降解的可生化性提高。
4.3.2 技术特点
氧化后废水可生化性显著提高,好氧生化处理COD去除率95%,有机磷转化为无机磷,可作为资源回收利用,具有良好的经济性和产业化应用前景。
4.3.3 应用领域
处理大多数高浓度有机废液以及回收和再生有用物料,如农药废水、城市污泥、垃圾渗滤液膜滤浓缩液、化工反应釜残液的处理和活性炭再生。
5、现有催化氧化技术存在的技术瓶颈
目前市场上研究热点为臭氧催化氧化技术,商用臭氧发生器,臭氧化气体的出口压力≤0.1MPa(表压),臭氧质量浓度高只能做到150~200mg/L。以压溶溶气泵的大溶气比例30%计,吨水压溶溶入的臭氧量大不超过60g,按臭氧对有机物的去除比例1∶3计算,单级压溶溶气方式的臭氧催化氧化工艺也只能去除约180mg/L的COD,这极大地限制了这种高效臭氧催化氧化工艺的适用范围;单台压溶溶气泵的大过水流量只有50t/h,在大水量的污水处理工程上,需要配置数量众多、价格昂贵的压溶溶气泵及附属设备,使得系统较为复杂且难以控制,投资强度偏高。
基于上述二个因素,催化氧化技术目前迫切需要解决的问题是:如何将臭氧气体的压溶溶气比例大幅提高,采用其他技术手段来替代价格昂贵的压溶溶气泵的溶气功能。